

System overview

Technical data

Inside or outside flexure curve

Available interior heights

18.0 mm

28.0 – 78.0 mm

Available radii

Available interior widths

15.0 – 70.0 mm

Ordering key Туре Variation **Ridge version Inside width Outside width Radius** mm mm mm **Material** for Type 0181 only for Type 0182 only 15 18 25 37 50 70 28 31 38 50 63 83 0 28 38 48 1 5 7 9 **Chain length** mm 0181 **01**¹⁾ 0182 022) 78 0 **Ordering key Chain link** Loading side: Inside or outside flexure curve max. 23 18 Ø 15 $(\oplus$ and . 15-70 28-83

Dimensions in mm

Order sample: 0181 01 015 028 0 0 1122

Frame bridge in outside bend, frame bridge in inside bend, can be opened from outside bend Inside width 15 mm; radius 28 mm Plastic bridge, full-ridged with bias, material black-coloured polyamide Chain length 1122 mm (34 links)

Technical specifications

Travel distance gliding L _g max.:	20.0 m
Travel distance self-supporting L _f max.:	see diagram
Travel distance vertical, hanging L_{vh} max.:	8.0 m
Travel distance vertical, upright L_{vs} max.:	3.0 m
Rotated 90°, unsupported L _{90f} max.:	0.5 m
Speed, gliding V_g max.:	2.0 m/s
Speed, self-supporting V _f max.:	5.0 m/s
Acceleration, gliding a _g max.:	5.0 m/s ²
Acceleration, self-supporting a, max.:	5.0 m/s ²

Material properties

Standard material:	Polyamide (PA) black
Service temperature:	-30.0 – 120.0 °C
Gliding friction factor:	0.3
Static friction factor:	0.45
Fire classification:	UL 94 HB

Other material properties on request.

MultiLine MP 18.1 MP 18.2

Determining the chain length

The fixed point of the cable drag chain should be connected in the middle of the travel distance.

This arrangement gives the shortest connection between the fixed point and the moving consumer and thus the most efficient chain length.

Chain length calculation = $L/2 + \pi * R + 2 * T + E \approx 1 \text{ m chain} = x 33.0 \text{ mm links.}$

 $\mathsf{E}=\mathsf{distance}$ between entry point and middle of travel distance

L = travel distance

R = radius P = Pitch

Self-supporting length

The self-supporting length is the distance between the chain bracket on the moving end and the start of the chain arch.

The installation variant ${\rm FL}_{_{\rm g}}$ offers the lowest load and wear for the cable drag chain.

The maximum travel parameters (speed and acceleration) can be applied for this variant.

I_s = Installation height plus safety

 H_{MA} = Height of moving end connection

 FL_{g} = Self-supporting length, upper run straight

 FL_{b} = Self-supporting length, upper run bent

Load diagram for self-supporting applications

FL_g Self-supporting Length, upper run straight In the FL_g range, the chain upper run still has a bias, is straight or has a maximum sag of

 $\label{eq:FL} \begin{array}{l} \mbox{Self-supporting Length, upper run bent} \\ \mbox{In the FL}_{\rm b} \mbox{ range, the chain upper run has a sag of more} \\ \mbox{than, but this is still less than the maximum sag.} \\ \mbox{Where the sag is greater than that permitted in the FL}_{\rm b} \\ \mbox{range, the application is critical and should be avoided.} \\ \mbox{The self-supporting length can be optimized by using a support} \\ \mbox{for the upper run or a more stable cable drag chain.} \end{array}$

Installation dimensions

Radius R	28	38	48	78
Outside height of chain link $(H_{\rm g})$				
Height of bend (H)	79	99	119	179
Height of moving end connection (H _{MA})	56	76	96	156
Safety margin (S)	30	30	30	30
Installation height (H _s)	109	129	149	209
Arc projection (M _L)	73	83	93	123
Bend length (L _B)	157	188	220	314

Chain bracket U-part

coated metal insert. The bracket is precisely adjusted to the respective chain width and only needs to be snapped in at the chain link. Please order one male and one female end bracket for each chain. The brackets should be fastened with M5 screws. The cables or conduits may be fastened with cable ties on the integrated strain relief of the chain bracket.

The chain bracket is an all-plastic part with an extrusion-

Туре	Order no.	Material	Inside width	_	_	_		Outside width KA
			А	E	F	G	HØ	0
			mm	mm	mm	mm	mm	mm
KA/Z 18015 male	018100004800	Plastic	15.4		19.0	10.5	5.5	A+13.0
KA/Z 18015 female	018100004900	Plastic	15.4		19.0	8.5	5.5	A+13.0
KA/Z 18018 male	018100005000	Plastic	18.4		19.0	10.5	5.5	A+13.0
KA/Z 18018 female	018100005100	Plastic	18.4		19.0	8.5	5.5	A+13.0
KA/Z 18025 male	018100005200	Plastic	25.4		19.0	10.5	5.5	A+13.0
KA/Z 18025 female	018100005300	Plastic	25.4		19.0	8.5	5.5	A+13.0
KA/Z 18037 male	018100005400	Plastic	37.4	A-17.4	19.0	10.5	5.5	A+13.0
KA/Z 18037 female	018100005500	Plastic	37.4	A-17.4	19.0	8.5	5.5	A+13.0
KA/Z 18050 male	018100005600	Plastic	50.4	A-16.4	19.0	10.5	5.5	A+13.0
KA/Z 18050 female	018100005700	Plastic	50.4	A-16.4	19.0	8.5	5.5	A+13.0
KA/Z 18070 male	018100005800	Plastic	70.4	A-22.4	19.0	10.5	5.5	A+13.0
KA/Z 18070 female	018100005900	Plastic	70.4	A-22.4	19.0	8.5	5.5	A+13.0

MultiLine MP 18.1 MP 18.2

Separator

We recommend that separators be used if multiple round cables or conduits with differing diameters are to be installed. An offset configuration of the separators is advisable.

Separator

Туре	Order no.	Designation	TI mm
TR 14/18	018200009000	Separator	1.5
		·	

Guide channels (VAW)

For this cable drag chain, a variable guide channel system is available, constructed from aluminium sections.

The variable guide channel ensures that the cable drag chain is supported and guided securely.

Disassembly

For help on choosing, please consult the chapter "Variable Guide Channel System".

VAW

Assembly

Step 1

Step 2

Step 3

Step 1

Step 2